Structure Reports

Online
ISSN 1600-5368

Rodolfo Moreno-Fuquen, ${ }^{\text {a }}{ }^{*}$ Hoover Valencia, ${ }^{\text {b }}$ Zulay Diney Pardo, ${ }^{\text {a }}$ Richard D'Vries ${ }^{\text {a }}$ and Alan R. Kennedy ${ }^{\text {c }}$
${ }^{\text {a }}$ Departamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia,
${ }^{\text {b }}$ Departamento de Química, Facultad de Ciencias, Universidad Tecnológica de Pereira, Pereira, Colombia, and ${ }^{\text {c }}$ Department of Pure and Applied Chemistry, University of Strathclyde, Scotland

Correspondence e-mail: rodimo26@yahoo.es

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.119$
Data-to-parameter ratio $=7.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-(3-Nitrophenyl)maleimide

The title compound, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$, belongs to a series of N -arylmaleimides, which can be used as photoinitiators for free-radical polymerization. The dihedral angles between the planes of the benzene and imide rings are 56.2 (1) and $52.9(1)^{\circ}$ in the two independent molecules in the asymmetric unit.

Comment

There is considerable activity related to the use of N-substituted maleimides as photoionizers for free-radical polymerization, where the maleimide can produce the initiating radical species (Pyriadi \& Nabeel, 1988; Andersson et al., 1996; Hoyle et al., 1999). In continuing the structural studies on N -substituted maleimide systems, to study the behaviour of $\mathrm{C}_{\text {aryl }}-\mathrm{N}$ distance and imide/benzene interplanar angle, the crystal structure determination of m-nitrophenylmaleimide, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$, (I), was undertaken. The reactivity of N -aromatic maleimides in photopolymerization processes as a function of the angle between the maleimide and benzene rings has been analysed (Miller et al., 2000). The p-nitrophenylmaleimide (p-NPM) system has been reported by our research group (Moreno-Fuquen et al., 2003). This structure has a close analogy to the title compound and it has been used as a model for comparison.

Received 2 May 2006
Accepted 1 June 2006

A perspective view of the two independent molecules in the asymmetric unit of the title compound, showing the atomic numbering scheme, is given in Fig. 1. Focusing on the $\mathrm{N}-\mathrm{C}_{\text {aryl }}$ bond length, in the title compound the $\mathrm{N} 2-\mathrm{C} 5$ and $\mathrm{N} 4-\mathrm{C} 15$ distances are 1.424 (4) and 1.421 (4) \AA, respectively. These values are close to the $\mathrm{N}-\mathrm{C}_{\text {aryl }}$ bond length for p-nitrophenylmaleimide (Moreno-Fuquen et al., 2003) and are slightly smaller than the average value reported for nine N arylmaleimide derivatives (Miller et al., 2000). The benzene ring mean plane is rotated $56.2(1)$ and $52.9(1)^{\circ}$ with respect to the imide ring mean plane. These values are dictated probably by the weak hydrogen bond between an O atom of

Figure 1
The asymmetric unit of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
the maleimide group and a C atom of the benzene ring. The rotation is smaller in the case of p-NPM, which has an angle of $42.98(5)^{\circ}$. This is consistent with the literature values, where other maleimides with bulky ortho substituents show angles of rotation greater than 80°. Other bond lengths and internal geometrical parameters of the title compound (Table 1) are similar to those in p-NPM. There are no significant intermolecular hydrogen bonds in the structure.

Experimental

Reagents and solvents for the synthesis were obtained from Aldrich Chemical Co., and were used without additional purification. The title compound was prepared by taking equimolar quantities of m-nitroaniline and maleic anhydride in nitrobenzene and refluxing at 513 K for 3 h . The reaction product was filtered and washed with hexane and then it was dissolved in a mixture of ethyl acetate-hexane (15% hexane) in order to purify it by column chromatography. The solid was crystallized from chloroform, giving pale-yellow prisms with a melting point of 395 (1) K.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$	$Z=8$
$M_{r}=218.17$	$D_{x}=1.541 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $P n a 2_{1}$	Mo $K \alpha$ radiation
$a=18.9815(6) \AA$	$\mu=0.12 \mathrm{~mm}^{-1}$
$b=6.6643(2) \AA$	$T=123(2) \mathrm{K}$
$c=14.8702(4) \AA$	Prism, pale yellow
$V=1881.06(10) \AA^{3}$	$0.40 \times 0.25 \times 0.07 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4	1693 reflections with $I>2 \sigma(I)$
\quad diffractometer	$R_{\text {int }}=0.032$
$\omega / 2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: none	2 standard reflections
4072 measured reflections	frequency: 150 min
2238 independent reflections	intensity decay: 0.1%

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045
$$

$$
w R\left(F^{2}\right)=0.119
$$

$$
S=1.05
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0754 P)^{2}\right. \\
& \quad+0.0433 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

2238 reflections
289 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

N2-C10	$1.393(4)$	C4-C5	$1.394(5)$
N2-C7	$1.404(4)$	C5-C6	$1.392(4)$
N2-C5	$1.424(4)$	C8-C9	$1.318(6)$
N4-C17	$1.400(5)$	C14-C15	$1.383(4)$
N4-C20	$1.403(4)$	C15-C16	$1.386(5)$
N4-C15	$1.421(4)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.329(6)$
C10-N2-C5	$124.8(3)$	C20-N4-C15	$124.8(3)$
C7-N2-C5	$124.2(3)$	C2-C1-N1	$118.8(3)$
C17-N4-C15	$124.8(3)$	C16-C11-N3	$118.4(3)$
O1-N1-C1-C2	$-6.9(5)$	O5-N3-C11-C16	$175.7(3)$
C7-N2-C5-C6	$116.7(4)$	C20-N4-C15-C16	$-47.8(5)$

In the absence of significant anomalous scattering, Friedel pairs were merged. H atoms were located in electron-density difference maps and subsequently treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 SDP (Frenz, 1978); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We are grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of the Cambridge Structural Database System. The authors also acknowledge the Universidad del Valle, Colombia for partial financial support.

References

Andersson, H., Gedde, U. W. \& Hult, A. (1996). Macromolecules, 29, 16491654.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Frenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft: University Press.
Hoyle, C. E., Viswanathan, K., Clark, S. C., Miller, C. W., Nguyen, C., Jonsson, S. \& Shao, L. (1999). Macromolecules, 32, 2793-2795.

Miller, C. W., Hoyle, C. E., Valente, E. J., Zubkowski, J. D. \& Jonsson, E. S. (2000). J. Chem. Crystallogr. 30, 563-571.

Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. \& Graham, D. (2003). Acta Cryst. E59, o1717-o1718.

Pyriadi, T. M. \& Nabeel, E. (1988). J. Macromol. Sci. Chem. A, 25, 1683-1688. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

